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2.3 Example

Preliminaries

[ Readings: Haykin’s 4th Ed. Chapter 2, Hayes Chapter 7 ]

• Why prefer FIR filters over IIR?

⇒ FIR is inherently stable.

• Why consider complex signals?

Baseband representation is complex valued for narrow-band
messages modulated at a carrier frequency.

Corresponding filters are also in complex form.

u[n] = uI [n] + juQ [n]

• uI [n]: in-phase component •
uQ [n]: quadrature component

the two parts can be amplitude modulated by cos 2πfct and sin 2πfct.
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(1) General Problem

(Ref: Hayes §7.1)

Want to process x [n] to minimize the difference between the estimate
and the desired signal in some sense:

A major class of estimation (for simplicity & analytic tractability) is to
use linear combinations of x [n] (i.e. via linear filter).

When x [n] and d [n] are from two w.s.s. random processes, we often
choose to minimize the mean-square error as the performance index.

minw J , E
[
|e[n]|2

]
= E

[
|d [n]− d̂ [n]|2

]
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(2) Categories of Problems under the General Setup

1 Filtering

2 Smoothing

3 Prediction

4 Deconvolution
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Wiener Problems: Filtering & Smoothing

Filtering

The classic problem considered by Wiener
x [n] is a noisy version of d [n]: x [n] = d [n] + v [n]
The goal is to estimate the true d [n] using a causal filter
(i.e., from the current and post values of x [n])
The causal requirement allows for filtering on the fly

Smoothing

Similar to the filtering problem, except the filter is allowed to
be non-causal (i.e., all the x [n] data is available)
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Wiener Problems: Prediction & Deconvolution

Prediction

The causal filtering problem with d [n] = x [n + 1],
i.e., the Wiener filter becomes a linear predictor to predict
x [n + 1] in terms of the linear combination of the previous
value x [n], x [n − 1], , . . .

Deconvolution

To estimate d [n] from its filtered (and noisy) version
x [n] = d [n] ∗ g [n] + v [n]

If g [n] is also unknown ⇒ blind deconvolution.
We may iteratively solve for both unknowns
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FIR Wiener Filter for w.s.s. processes

Design an FIR Wiener filter for jointly w.s.s. processes {x [n]} and {d [n]}:

W (z) =
∑M−1

k=0 akz
−k (where ak can be complex valued)

d̂ [n] =
∑M−1

k=0 akx [n − k] = aT x [n] (in vector form)

⇒ e[n] = d [n]− d̂ [n] = d [n]−
∑M−1

k=0 akx [n − k]︸ ︷︷ ︸
d̂ [n]=aT x[n]

By summation-of-scalar:
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FIR Wiener Filter for w.s.s. processes

In matrix-vector form:

J = E
[
|d [n]|2

]
− aHp∗ − pTa + aHRa

where x [n] =


x [n]

x [n − 1]
...

x [n −M + 1

, p =

 E [x [n]d∗[n]]
...

E [x [n −M + 1]d∗[n]]

,

a =

 a0
...

aM−1

.

E
[
|d [n]|2

]
: σ2 for zero-mean random process

aHRa: represent E
[
aT x [n]xH [n]a∗

]
= aTRa∗
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Perfect Square

1 If R is positive definite, R−1 exists and is positive definite.

2 (Ra∗ − p)HR−1(Ra∗ − p) = (aTRH − pH)(a∗ − R−1p)

= aTRHa∗ − pHa∗ − aT RHR−1︸ ︷︷ ︸
=I

p + pHR−1p

Thus we can write J(a) in the form of perfect square:

J(a) = E
[
|d [n]|2

]
− pHR−1p︸ ︷︷ ︸

Not a function of a; Represent Jmin.

+ (Ra∗ − p)HR−1(Ra∗ − p)︸ ︷︷ ︸
>0 except being zero if Ra∗−p=0
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Perfect Square

J(a) represents the error performance surface:

convex and has unique minimum at Ra∗ = p

Thus the necessary and sufficient condition for determining the
optimal linear estimator (linear filter) that minimizes MSE is

Ra∗ − p = 0⇒ Ra∗ = p

This equation is known as the Normal Equation.
A FIR filter with such coefficients is called a FIR Wiener filter.
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Perfect Square

Ra∗ = p ∴ a∗opt = R−1p if R is not singular
(which often holds due to noise)

When {x [n]} and {d [n]} are jointly w.s.s.
(i.e., crosscorrelation depends only on time difference)

This is also known as the Wiener-Hopf equation (the discrete-time

counterpart of the continuous Wiener-Hopf integral equations)
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Principle of Orthogonality

Note: to minimize a real-valued func. f (z , z∗) that’s analytic (differentiable

everywhere) in z and z∗, set the derivative of f w.r.t. either z or z∗ to zero.

• Necessary condition for minimum J(a): (nece.&suff. for convex J)

∂
∂a∗k

J = 0 for k = 0, 1, . . . ,M − 1.

⇒ ∂
∂a∗k

E [e[n]e∗[n]] = E
[
e[n] ∂

∂a∗k
(d∗[n]−

∑M−1
j=0 a∗j x

∗[n − j ])
]

= E [e[n] · (−x∗[n − k])] = 0

Principal of Orthogonality

E [eopt[n]x∗[n − k]] = 0 for k = 0, . . . ,M − 1.

The optimal error signal e[n] and each of the M samples of x [n]
that participated in the filtering are statistically uncorrelated
(i.e., orthogonal in a statistical sense)
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Principle of Orthogonality: Geometric View

Analogy:
r.v. ⇒ vector;
E(XY) ⇒ inner product of vectors

⇒ The optimal d̂ [n] is the

projection of d [n] onto the subspace

spanned by {x [n], . . . , x [n−M + 1]}
in a statistical sense.

The vector form: E
[
x [n]e∗opt[n]

]
= 0.

This is true for any linear combination of x [n] and for FIR & IIR:

E
[
d̂opt[n]eopt[n]

]
= 0
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Minimum Mean Square Error

Recall the perfect square form of J:

J(a) = E
[
|d [n]|2

]
− pHR−1p︸ ︷︷ ︸+ (Ra∗ − p)HR−1(Ra∗ − p)︸ ︷︷ ︸

∴ Jmin = σ2d − aHo p
∗ = σ2d − pHR−1p

Also recall d [n] = d̂opt[n] + eopt[n]. Since d̂opt[n] and eopt[n] are

uncorrelated by the principle of orthogonality, the variance is

σ2d = Var(d̂opt[n]) + Jmin

∴ Var(d̂opt[n]) = pHR−1p

= aH0 p
∗ = pHa∗o = pTao real and scalar
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Example and Exercise

• What kind of process is {x [n]}?
• What is the correlation matrix of the channel output?
• What is the cross-correlation vector?

• w1 =? w2 =? Jmin =?
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Detailed Derivations
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Another Perspective (in terms of the gradient)

Theorem: If f (z , z∗) is a real-valued function of complex vectors z and z∗,
then the vector pointing in the direction of the maximum rate of the change of
f is 5z∗ f (z , z∗), which is a vector of the derivative of f () w.r.t. each entry in
the vector z∗.

Corollary: Stationary points of f (z , z∗) are the solutions to 5z∗ f (z , z∗) = 0.

Complex gradient of a

complex function:

aHz zHa zHAz

5z a∗ 0 AT z∗ = (Az)∗

5z∗ 0 a Az

Using the above table, we have 5a∗J = −p∗ + RTa.

For optimal solution: 5a∗J = ∂
∂a∗ J = 0

⇒ RTa = p∗, or Ra∗ = p, the Normal Equation. ∴ a∗opt = R−1p

(Review on matrix & optimization: Hayes 2.3; Haykins(4th) Appendix A,B,C)
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Review: differentiating complex functions and vectors
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Review: differentiating complex functions and vectors
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Differentiating complex functions: More details
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