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Preliminaries
[ Readings: Haykin's 4th Ed. Chapter 2, Hayes Chapter 7 ]
e Why prefer FIR filters over [IR?
= FIR is inherently stable.
e Why consider complex signals?

@ Baseband representation is complex valued for narrow-band
messages modulated at a carrier frequency.

@ Corresponding filters are also in complex form.

uln] = us[n] + jug[n] N

e uy[n]: in-phase component .
~ fr_ T

A
ug[n]: quadrature component
the two parts can be amplitude modulated by cos2nf.t and sin 2w f.t.
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(1) General Problem

(Ref: Hayes §7.1)
bi%%t}dm
— | N@) |~——=

observed x a7y teny en]
3‘%““" esﬁm’reotsramk et ssanal

Want to process x[n] to minimize the difference between the estimate
and the desired signal in some sense:

A major class of estimation (for simplicity & analytic tractability) is to
use linear combinations of x[n] (i.e. via linear filter).

When x[n] and d[n] are from two w.s.s. random processes, we often
choose to minimize the mean-square error as the performance index.

min,, J 2 E [|e[n]|?] = E [Id[n] —d[n]P?
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(2) Categories of Problems under the General Setup

Q Filtering
@ Smoothing
© Prediction

@ Deconvolution
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Wiener Problems: Filtering & Smoothing

o Filtering
e The classic problem considered by Wiener
e x[n] is a noisy version of d[n]: x[n] = d[n] + v[n]
o The goal is to estimate the true d[n] using a causal filter
(i.e., from the current and post values of x[n])
e The causal requirement allows for filtering on the fly

@ Smoothing

e Similar to the filtering problem, except the filter is allowed to
be non-causal (i.e., all the x[n] data is available)
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Wiener Problems: Prediction & Deconvolution

@ Prediction

o The causal filtering problem with d[n] = x[n + 1],
i.e., the Wiener filter becomes a linear predictor to predict
x[n+ 1] in terms of the linear combination of the previous
value x[n], x[n —1],,...

@ Deconvolution

o To estimate d[n] from its filtered (and noisy) version
x[n] = d[n] x g[n] + v[n]

o If g[n] is also unknown = blind deconvolution.
We may iteratively solve for both unknowns
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FIR Wiener Filter for w.s.s. processes

Design an FIR Wiener filter for jointly w.s.s. processes {x[n]} and {d[n]}:
W(z) = Zk"/’:—ol axkz~k (where a, can be complex valued)
d[n] = ZQ/’:_OI akx[n — k] = a” x[n] (in vector form)
= e[n] = d[n] — d[n] = d[n] — ST " akx[n — K]
—_——
d[n]=a"x[n]

By summation-of-scalar:
J=ellewa|"] = E[ emy e¥em]
i T el M
= E[1deal] = Efdend :S;uatx*[wmj - BT X dextet) +tL:£O 2 Nl YO e

Mt M=t Ml b =% — =
= E[ \dm\‘] — %;_Daﬁ eldmx o) — >, 0c g:_[_(fq,\]xu-pﬂ o %’%&KMELXM—\{]X D\-R]J
Px (L&)
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FIR Wiener Filter for w.s.s. processes
In matrix-vector form:

J=E[|d[n]]*] - a"p* — pTa+a"Ra

x[n] .
oy B0l o]
where x[n] = : . p= : ,
x[n—-l\/l—ﬁ—l E [x[n — M+ 1]d*[n]]
ao
) am—1

@ E [|d[n][’]: o for zero-mean random process

@ a"Ra: represent E [gTz[n]gH[n]g*] = a'Ra"
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Perfect Square

@ If R is positive definite, R™! exists and is positive definite.

(2 (Rg* _ p)HRfl(Rg* _B) — (éTRH _ pH)(g* _ Rflg)
_ A TpH*x _ H+x__ . TpHRp-1 Hp-1
a'R"a" —pa*—a' RTR_ p+p"R7'p
=I

Thus we can write J(a) in the form of perfect square:

Ja)= E[d[nP]-p"R'p + (Ra*—p)"R7(Ra" - p)

Not a function of a; Represent Jyin. >0 except being zero if Ra*—p=0
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Perfect Square

Tty

J(a) represents the error performance surface:

convex and has unique minimum at Ra* = p Qo

78 for s

Thus the necessary and sufficient condition for determining the
optimal linear estimator (linear filter) that minimizes MSE is

Ra*—p=0=Ra"=p

This equation is known as the Normal Equation.
A FIR filter with such coefficients is called a FIR Wiener filter.
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Perfect Square

Ra* =p ot = R*13 if R is not singular

(which often holds due to noise)

.ok
- 4o

When {x[n]} and {d[n]} are jointly w.s.s.
(i.e., crosscorrelation depends only on time difference)

T Ic©) P T 0% AER)
Rty Puld) N
\ AN . "
M 1) T o Pyl
}U o p¥

This is also known as the Wiener-Hopf equation (the discrete-time

counterpart of the continuous Wiener-Hopf integral equations)
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Principle of Orthogonality

Note: to minimize a real-valued func. f(z,z") that's analytic (differentiable
everywhere) in z and z*, set the derivative of f w.r.t. either z or z* to zero.
o Necessary condition for minimum J(a): (nece.&suff. for convex J)
pard =0for k=0,1....,M~1.

= 2 [e[n]e’ [n]]—E[e[n]da (d*In] = XJ5" aixln = J))]
= Ee[n] - (—x*[n— K])] = 0

Principal of Orthogonality
E [eopt[n]x*[n — k]] = 0 for k=0,...,M — 1.

The optimal error signal e[n] and each of the M samples of x[n]
that participated in the filtering are statistically uncorrelated

(i.e., orthogonal in a statistical sense)
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Principle of Orthogonality: Geometric View

Grenweky Analogy:
1WPT°’W‘M ey r.v. = vector;

E(XY) = inner product of vectors

= The optimal d[n] is the
oY [inenr combinaAione projection of d[n] onto the subspace

5 X[n] ~- - RO spanned by {x[n],...,x[n— M+ 1]}
M- md»&as‘bl—k DP\'WMJ d\C"\X

in a statistical sense.

The vector form: E [x[n]ex:[n]] =

This is true for any linear combination of x[n] and for FIR & IIR:
E [aopt[n]eopt[n]} ~0
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Minimum Mean Square Error

Recall the perfect square form of J:
J(a) = E[|d[n]’] — p"R7'p+ (Ra* — p)"R™}(Ra" - p)

. _ 2 2
-Jmin—Ud_QoB =04 —

Also recall d[n] = dopt[n] + €opt[n]. Since dopt[n] and eqpi[n] are
uncorrelated by the principle of orthogonality, the variance is

0% = Var(dopt[n]) + Jmin

. Var(dopt[n]) = p'R™1p

= g(l)—IB* = Bng = BTQO real and scalar
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Example and Exercise

des rodk

synak Uaon] wemy
AN dona dm X [n] 3 @
—
b.345% 0.9458 " e
VI WBB DL distmerion phs Ious G design 0
2ero-yean W e VST 2=top Nrenerfitter e

o = o v b wite
(Meak-vabuek) (s, real volued ) a et estTmale 5din),

> 2 Wea— | 5 Iepresenta
We kave. 07 = 0.27 , 0a=e0, Thyl V., Yl X (Wmm&ﬁm@sxs)

e What kind of process is {x[n]}?
e What is the correlation matrix of the channel output?
o What is the cross-correlation vector?

ows =7 wr =7 Jnin =7
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Another Perspective (in terms of the gradient)

Theorem: If f(z,z*) is a real-valued function of complex vectors z and z*,
then the vector pointing in the direction of the maximum rate of the change of

fis \vz+f(z,2"), which is a vector of the derivative of () w.r.t. each entry in
the vector z*.

Corollary: Stationary points of f(z,z*) are the solutions to \/+f(z,z") = 0.

| a"z | 2Ma | ZMAz
Complex gradient of a
complex function: Vz | & 0 | ATz = (Az)*
v 0 a Az

Using the above table, we have \/,-J = —p* + R7a.

For optimal solution: /,«J = da* J=0

= RTa=p*, or Ra* = p, the Normal Equation. .". ai:=R™ Ip
(Review on matrix & optimization: Hayes 2.3; Haykins(4th) Appendix A,B,C)
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Review: differentiating complex functions and vectors

< Drterenk sblod 4, Need 5 conden e
};weﬁﬁ =2 in ok durekTons
230 Ay o Ay >0

Recoll : (&) ts onalytic (e differetiolable awony where) on t0gionD 1§
13)= Wx gy + L) 1S conimens and- Sakisty Cam)\»\[ ~Rremonn
conditon 2w Vg S _oU

X T N N9y T ox -

Deg Hpy=3=(30= ey ) 4 teo

FH=3%=x-1Y
—=> DOES NOT go:)ﬁSj'\/ Cmu)r\-\f—— Rremoun .
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Review: differentiating complex functions and vectors

w»\»lu.
“M‘ﬂ (8 = (3 WMo 0 3= 0 bulC ML
;;ln‘::z —\fa,bla/TM/Dm{) lex. w%mldss (omy fune. ﬁ.\u—dwm 3¥Frs mt differenttable)
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Miniwd2ing o reak-uamedotuncs o 3 wd 3™ ( ondotia fanc 5 A
Qs ot beth 3 and _3T) 15 sowemhok eqsier -
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Differentiating complex functions: More details

=x« iy Ty = W) + vy
N . K:t(}f}j) = ﬁ%‘%‘:%«-\l—:%
=3 (5-¥") %=%ﬂ§?

ﬁ%*ﬁ t[%+%%vlﬂ e Bom g S ot

ot 9 > ot -
3 2 e sf
reol—volued Wf)i‘nﬂ- T = ey, S ke csuplexs
DD of v GrediRuC - = 24
b O - (B, et vus[B] T3t o e

2. O ¢ Q)= §=xtiy ‘ .
i S:ai (&TJ—L%”%]: Ll+itd=o0 %ﬂt(%—cawzi(wm) =1

£2.0 f\=¥". . . o
g Lt A M f&M\—Tm o BN 38 e (o) 5 S
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